

ISG73

high temperature flat chip resistors

dimensions and construction

Derating Curve

100

80

60

40

20

0∟ -100

-55

6Rated Powe

1E/0.125W (125°C)

2A/0.25W (125°C)

2B/0.33W (125°C)

1J/0.2W (135°C)

Terminal Part Tem

80

60

40

20

0∟ -100

6Rated Powe

1E/0.2

-55

2A/0.5W (100°C)

Terminal Part T

(°C)

V,2B/0.75W (105°C)

1J/0.33W (125

features

 High heat resistance that can be used even at high temperatures of 155°C or higher. The maximum operating temperature of Sn plating

- products compatible with solder mounting is 175°C, and Au plating products compatible with conductive glue mounting is 200°C.
- Excellent heat resistance and weather resistance are ensured by the use of metal glaze thick film
- · High stability and high reliability with the triple-layer structure of electrode
- Superior to RK73 series chip resistors pulse withstanding voltage and high power
- · Applicable to various kinds of automatic mounters for taping, etc
- Products meet EU RoHS requirements. EU RoHS regulation is not intended for Pb-glass contained in electrode, resistor element and glass.
- AEC-Q200 Tested

	Туре	Dimensions inches (<i>mm</i>)					
	(Inch Size Code	L	W	с	d	t	
Outer Plating Inner Plating	1E (0402)	$\begin{array}{c} .039 \begin{array}{c} +.003 \\002 \\ (1.0 \begin{array}{c} +.01 \\ -0.05 \end{array}) \end{array} \begin{array}{c} .02 \\ (0.3 \end{array}$.020±.002	.008±.006 (0.2±0.15)	.010 +.002 004 (0.25 +0.05 -0.1)	.014±.002 (0.35±0.05)	
Protective Resistive Inner Coating Film Electrode	1E AT (0402)		(0.5±0.05)		.012±.006 (0.3±0.15)		
Curve	1J (0603)	.063±.008	.063±.008 (1.6±0.2) .031±.004 (0.8±0.1)	.012±.006 (0.3±0.15)	.012±.004 (0.3±0.1)	.018±.004 (0.45±0.1)	
bient Temperature	1J AT (0603)	(1.6±0.2)		.014±.006 (0.35±0.15)	.020±.004 (0.5±0.1)		
inial Surface Material T	emperature 2A (0805) e derated in	.079±.008	$0.08 \ .049 \pm .004 \ .0125 \pm 0.1$.016±.010 (0.4±0.25)	.012 +.008 004 (0.3 +0.2)	.02±.004 (0.5±0.1)	
inal Surface	with the 2A AT (0805)	(2.0 ± 0.2) (1.25 ± 0.2)	(1.25±0.1)	.018±.010 (0.45±0.25)	.024±.008 (0.6±0.2)	.022±.004 (0.55±0.1)	
	2B (1206)	2B 206) .126±.008 (3.2±0.2) .C	.063±.008 (1.6±0.2)	.022±.014 (0.55±0.35)	.016 +.008 004 (0.4 ^{+0.2} -0.1)	.024±.004 (0.6±0.1)	
Ambient Temperature (°C)	2B AT (1206)				.031±.008 (0.8±0.2)		
Ferminal Part Temperature Applied to Sn Plating Products							

When the terminal part temperature of the resistor exceeds the rated terminal part temperature shown above, the power shall be derated according to the derating curve. If you want to use at the rated power of *1, please use the

derating curves based on the terminal part temperature of right side. Please refer to "Introduction of the derating curves based on

the terminal part temperature" in the beginning of our catalog before use.

ordering information

(°C)

100

125135

rature

175

100

105125

perature

175

Contact us when you have control request for environmental hazardous material other than the substance specified by EU RoHS. Specifications given herein may be changed at any time without prior notice. Please confirm technical specifications before you order and/or use.

11/14/23

high temperature flat chip resistors

applications and ratings

Part Designation	Power Rating	Rated Amb Term. Surf. Material: T (Sn plating)	Dient Temp. Term. Surf. Material: G (Au plating)	Rated Term, Term. Surf. Material: T (Sn plating)	. Part Temp. Term. Surf. Material: G (Au plating)	T.C.R. (x10⁵/K) Max.	Resistan F: ±1% E24	ce Range J: ±5% E24	Maximum Working Voltage	Maximum Overload Voltage
HSG73P1E	0.125W	70°C	70°C	125°C	_	±200	10Ω~1MΩ	1Ω~10MΩ	75V	100V
(0402)	0.2W ^{*1}	70°C	—	105°C	—					
HSG73P1J (0603)	0.2W	70°C	70°C	135°C	—	±200	10Ω~1ΜΩ	1Ω~10ΜΩ	150V	200V
	0.33W ^{*1}	70°C	—	125°C	—					
HSG73P2A	0.25W	70°C	70°C	125°C	—	+200	10Ω~1ΜΩ	1Ω~10ΜΩ	200V	400V
(0805)	0.5W ^{*1}	70°C	—	100°C	—	1200				
HSG73P2B (1206)	0.33W	70°C	70°C	125°C	_	±200	10Ω~1ΜΩ	1Ω~10ΜΩ	200V	400V
	0.75W [*] 1	70°C	_	105°C	_					

Operating Temperature Range :-55°C ~ +175°C (Terminal Surface Material: T), -55°C ~ +200°C (Terminal Surface Material: G)

Rated voltage = \sqrt{Power} rating x resistance value or max. working voltage, whichever is lower

*1 If you use at the rated power, please keep the condition that the terminal of the resistor is below the rated terminal part temperature.

Please refer to the derating curves based on the terminal temperature.

If any questions arise whether to use the "Rated Ambient Temperature" or the "Rated Terminal Part Temperature" your usage conditions, please give priority to the "Rated Terminal Part Temperature" or the "Rated Terminal Part Temperature" or the "Rated Terminal Part Temperature" of th

environmental applications

Temperature Rise

Regarding the temperature rise, the value of the temperature varies per conditions and board for use since the temperature is measured under our measuring conditions.

Performance Characteristics

One-Pulse Limiting Electric Power

The maximum applicable voltage is equal to the max. overload voltage. Please ask us about the resistance characteristic of continuous applied pulse.

	Requirement $\Delta R \pm (\%+0.1\Omega)$				
Parameter	Limit	Typical	Test Method		
Resistance	Within specified tolerance	—	25°C		
T.C.R.	Within specified T.C.R.	—	Characteristic (Nil) Standard: +25°C/-55°C, +25°C/+125°C Characteristic (A) Heat shock resistance: +25°C/-55°C, +25°C/+175°C		
Overload (Short time)	±2%	±0.5%	Rated Voltage x 2.5 for 5 seconds (2A: 0.5W; 2B: 0.75W Rated Voltage x 2 for 5 seconds)		
Rapid Change of Temperature	±0.5%: Characteristic (Nil) Standard 1%: Characteristic (A) Heat Shock Resistance	±0.3%: Characteristic (Nil) Standard 0.5%: Characteristic (A) Heat Shock Resistance	Characteristic (Nil) Standard: -55°C (30 min.)/+125°C (30 min.) 100 cycles Characteristic (A) Heat Shock Resistance: -55°C (30 min.)/+175°C (30 min.) 1000 cycles		
Moisture Resistance	±2%: 1J, 2A, 2B ±3%: 1E	±0.75%: 1J, 2A, 2B ±1%: 1E	40°C ± 2°C, 90%-95% RH, 1000 hours, 1.5 hr ON, 0.5 hr OFF cycle		
Endurance at 70°C	±2%: 1J, 2A, 2B ±3%: 1E	±0.75%: 1J, 2A, 2B ±1%: 1E	70°C \pm 2°C, 1000 hours, 1.5 hr ON, 0.5 hr OFF cycle		
High Temperature Exposure	±2%	±0.5%	+200°C, 1000 hours (Terminal Surface Material [G]: Au plating products)		
Endurance at 175°C	±1%	±0.3%	+175°C, 1000 hours, Power Rating×10% (Terminal Surface Material [T]: Sn plating products)		

For Surface Temperature Rise Graph see Environmental Applications. Additional environmental applications can also be found at www.koaspeer.com Specifications given herein may be changed at any time without prior notice. Please confirm technical specifications before you order and/or use. 11/09/22